Infant of Diabetic Mother — Not just Glucose

Declan O'Riordan, MD Neonatologist St. Luke's Children's Hospital Boise, Idaho

Speaker Disclosure

• I have no financial interest in the topic discussed.

• I will not discuss therapies which are not FDA approved.

Learning Points

- Maternal diabetes causes an abnormal intrauterine environment
- Abnormal intrauterine environment may cause malformations and growth problems
- In addition to well-known hypoglycemia, infants of diabetics are at risk for other difficulties, including feeding and neurologic problems.

Historical Aspects

- Symptoms of DM recognized for thousands of years (as early as 1500 BC)
- Until insulin, no effective treatment for childhood DM—caloric restriction to 450 kcal/day could prolong life
- Frederick Banting and Charles Herbert Best developed insulin in 1921 and 1922— injected pancreatic extracts into a diabetic dog, then into a child dying of ketoacidosis

Type of Diabetes Mellitus

- Type 1—old term "Juvenile-onset DM"
 - 5-10% of cases of diabetes
 - Onset mostly in childhood (15 to 30% of cases occur after age 30 yr) with autoimmune attack on ß-cell
- Type 2 DM—"Adult Onset"
 - About 90% of cases insulin resistance and deficiency
 - Onset in adolescence to adulthood
- Gestational DM−5% of pregnancies
 - Abnormal glucose tolerance during pregnancy
 - Higher rates in older women, overweight, minorities

DM and Pregnancy

- Pre-gestational v Gestational DM
 - Pre-gestational
 - Type 1—"Childhood Onset"
 - Type 2—"Adult Onset"
 - Gestational: onset of insulin resistance in pregnancy — assumed to have normal glucose level early in pregnancy

Hyperglycemia Early in Pregnancy

- Hyperglycemia → Teratogenic
- IDM risk for congenital malformation: 5-6% overall
- Risk if mother requires insulin: 10-12%
- Congenital malformations cause of death in 50% of IDM perinatal deaths

Fetus and Diabetic Pregnancy

- Increased risk for stillbirth fetal loss after 20 wk
- Perinatal mortality rate: Stillbirths + infant deaths up to 28 days/1000 births
- Prior to discovery of insulin
 - -Successful pregnancy was rare
 - Perinatal mortality rate 65% (1909)
 - Maternal death rate almost 30%

Decline in IDM Perinatal Mortality Rate 1920-2000

Fig. 1. Estimated rate of stillbirth in diabetic women: 1920–2000. These estimates of the stillbirth rate in diabetic women are based on a summary of the reported literature.

Stillbirth – General Concepts

- National Center for Health Statistics (2003):
 6.23/1000 births (overall rate for all pregnancies)
- Rate has been declining for past 50 years
- Most of improvement in rate is for > 28 wks
- Higher stillbirth rates for some groups
 - Non-Hispanic black women: 11.56/1000 births
 - Single women: 8.25/1000
 - Teens, Women > 35 y at higher risk
 - Twins: 16.52/1000
 - Fetal growth restriction with maternal DM

Stillbirth: Type 1 and Type 2 DM

• Type 1:

- Denmark 1990-2000: 18/1000 pregnancies
- Denmark 1993-1999: 28/1000 pregnancies (RR 6.2)
- Scotland 1979-1995: 25/1000 births (RR 4.7)
- Scotland 1998-1999: 18.5/1000 (RR 3.6)
- UK 2002-2003: 25.8/1000 births (RR 4.5)

• Type 2:

- New Zealand (Cundy 2000): 34/1000 v 12/1000
 in Type 1 Much worse glucose control in Type 2
- UK 2002-2003: 29.2 (RR 5.1)

Stillbirth and Gestational DM

- Numbers not as clear as with Type 1 and 2
- Girz (1992): Intensive monitoring
 - -7.7/1000 births
 - Controls: 4.8/1000

 Overall likely some increased risk for stillbirth in GDM, but not to degree of Type 1 or Type 2 DM pregnancies

Causes of Fetal Deaths

- Many cases unexplained
- Fetal hyperglycemia believed to cause acidosis
 - Increased fetal metabolic rate
 - Lactic acidosis (Bradley 1991)
 - Animals: ↑ acidosis and ↑ oxidative damage lead to
 ↑ fetal deaths and ↑ malformations
- Possibly undetected ketoacidosis (DKA)
 - Perinatal mortality rate 50-90%
- Congenital malformations, infection, vascular insufficiency

Risk for Anomalies (2008 NBDPS study)

- 13,030 infants with anomalies v 4895 controls
 - Risk for Multiple anomalies: highest in mothers with pre-gestational DM (OR 8.62 95% CI 5.27-14.1) reflects teratogenic effect of hyperglycemia
 - Risk for Single anomaly: higher in pre-gestational DM (OR 3.17 95% CI 2.2 to 4.99)
 - Risk for anomalies higher even in those with Gestational DM (OR 1.42 and 1.5 for single and multiple anomalies)

Pre-gestational DM and CHD

	Isolated Defect Odd Ratio	Multiple Defect Odds Ratio
Tetralogy of Fallot	4.89 (2.18-10.95)	6.0 (1.67-21.58)
dTGA	3.34 (1.11-10.07)	71.97 (7.43-696
AV Canal	12.36 (3.68-41.49)	25.28 (4.2-152.1)
TAPVR	7.12 (1.99-25.42)	Not estimated
Aortic Stenosis	5.01 (1.09-22.9)	Not estimated
LV Outflow tract problems	4.58 (1.3-16.1)	Not estimated
RV Outflow tract problems	9.61 (3.53-26.15)	9.83 (1.05-91.85)
Perimembranous VSD	2.89 (1.27-6.56)	7.70 (2.37-25.04)
ASD (secundum)	8.47 (4.37-16.42)	13.46 (5.23-34.6)
ASD (unspecified)	5.32 (1.44-19.68)	Not significant
VSD + ASD	5.83 (2.48-13.70)	9.62 (2.95-31.35)
OVERALL	4.64 (2.87-7.51)	10.77 (6.23-18.62)

Congenital Cardiac Malformations

- Overall risk 8.5 per 100 live births to DM
- Defects seen: AV Canals, common atrium, situs inversus, TGA, DORV, VSD, truncus arteriosus, tricuspid atresia, PDA

• Overall incidence of congenital heart disease in all newborns is 1 per 100.

Pre-gestational DM and Other Defects

	Isolated Defect Odds Ratio	Multiple Defect Odds Ratio
All non-cardiac defects	2.34 (1.44-3.81)	7.80 (4.66-13.05)
Anencephaly	3.39 (1.11-10.31)	Not estimated
Spina Bifida	NS	7.99 (1.61-39.70)
Holoprosencephly	NS	16.16 (1.59-163.88)
Anotia/Microtia	3.75 (1.04-13.51)	18.50 (6.95-49.24)
Hydrocephaly	8.8 (3.39-22.84)	12.13 (3.68-39.98)
Cleft Lip ± Palate	2.92 (1.45-5.87)	8.07 (3.05-21.39)
Imperforate Anus	4.70 (1.55-14.26)	8.22 (3.62-18.66)
Biliary Atresia	NS	18.40 (1.84-183.79)
Longitudinal Limb Defic.	6.47 (1.83-22.9)	7.01 (1.91-25.68)
Sacral Agenesis	Not estimated	130.17 (33.8-501)

Birth Defects and Gestational DM

- Weaker odds ratios for birth defects seen in gestational DM
 - overall isolated and overall multiple cardiac defects (OR 1.59 and 1.65).
 - Significant for ToF, Pulmonary Stenosis, and Secundum ASDs
- Association of GDM to isolated non-cardiac defects still significant (OR 1.3 (1.05-1.60))
- Why ↑ risk in gestational DM????

Birth Defects in Gestational DM

- Probably a reflection of pre-pregnancy elevation of glucose
- Birth defects seen more often with maternal obesity
- "Gestational DM" in some may actually represent latent Type 2 DM

Effect of Maternal Wt on Defect Risk in DM in Pregnancy (NBDPS)

		OR for Isolated Birth Defect
Pre-gestational	Average Wt	2.61 (1.22-5.58)
	Overweight	3.53 (1.24-10.08)
	Obese	3.92 (2.02-7.62)
Gestational	Average Wt	1.07 (0.78-1.45)
	Overweight	1.90 (1.28-2.82)
	Obese	1.90 (1.38-2.63)

Gestational Diabetics with normal pre-pregnancy wt did not have increased risk for isolated defects.

Risk for multiple defects also showed 个 risk w/obesitv

Specific Birth Defects

Small Left Colon Syndrome

- Rare
- Bowel obstruction
- Narrow caliber of distal colon beyond splenic flexure
- Usually resolves time
- DDx: Hirshsprung disease

Fig. 1 Gastrograffin enema showing abrupt transition at splenic flexure and narrow left colon.

Ellis et al J Ped Surgery 2009

Caudal Regression Syndrome

- Caudal end of spinal cord ends abruptly
- Sacrum hypoplastic
- GU and Lower extremity abnormalities
- Legs may be fused (sirenomelia)
- Rare but associated with infants of DM

Sharma and Jana, Neurology, 2011

Sacral Agenesis/Caudal Regresion

Gabbe: Obstetrics: Normal and Problem Pregnancies, 6th ed

Macrosomia – "big baby"

- Maternal hyperglycemia→fetal hyperglycemia
- Fetal insulin stimulates growth
 - Hyperplasia and hypertrophy of adipocytes
 - Hypertrophy of organs (liver, heart), skeleton
 - Growth acceleration begins at 25 to 28 wks
 - Brain and renal growth are normal
 - Increased shoulder size due to fat accumulation risk ↑ shoulder dystocia
 - 50% increase in fat stores compared to controls
- Other substances may also affect growth

Macrosomia – Difficult labor

- Increased shoulder size and abdominal circumference > more difficult delivery
- † risk for shoulder dystocia
- † risk for injuries (brachial plexus, clavicular fracture, cephalohematoma, phrenic nerve injury, others)
- † risk for asphyxia
 - 27% of 162 infants born to White class B-R-T mothers had signs of asphyxia (nephropathy, prematurity, hyperglycemia before delivery † risk)

But.....they're not always big....

- About 5% of IDMs are IUGR (small)
- Uteroplacental insufficiency
 - Maternal vascular disease (Class F, Class R)
 - Hypertension
 - Protein/Energy malnutrition + hypoxia
 - Need to watch for compromise in delivery

IDM: Polycythemia

- Venous HCT > 65%
 - Mimouni (1993)
 - 29% in IDM
 - 5.9% in controls
- Relative hypoxia in utero from hyperglycemia
- One-third of IDMs had elevated umbilical cord EPO levels
- Direct effects of insulin on RBC precursors may contribute
- Green et al (1992): Maternal Hgb A1C correlated to Neonatal HCT

Polycythemia Evaluation

- Follow venous hematocrit
- Viscosity rises with HCT > 65%
- Monitor for complications of Hyperviscosity
 - Hypoglycemia
 - Thrombocytopenia
 - Systemic thrombosis (renal vein, stroke, etc)
 - PPHN
 - Altered neurologic function

Hyperviscosity: Therapy

- Balance risk of therapy with benefit
- IV fluids: low risk, avoids excessive wt loss
- Partial volume exchange transfusion:
 - Sequentially replace blood with Normal Saline to decrease HCT to 55 to 60 range
 - Invasive requires either UVC, UAC, or peripheral art line
 - Increased risk for necrotising enterocolitis (NEC)
 - Does not improve neurologic outcome

Renal Vein Thrombosis

- Rare, but associated with maternal DM
- Post mortem review of 16 cases
 - 5 were in infants of DM
 - 7 other infants were macrosomic with ß-cell hypertrophy and hyperplasia (very suggestive of fetal hyperinsulinemia)
- Presentation: Hypertension, flank mass, hematuria, thrombocytopenia
- DX: renal doppler US

Altered Iron Stores

- † HCT requires † iron
- Limited Placental transport
- Reduced iron in:
 - Heart: ↓55%
 - Brain: ↓40%
- 65% have low ferritin at birth
- May affect neurodevelopment (iron deficiency)

- 95% of LGA IDM have altered iron metabolism
 - Low ferritin
 - ↑TIBC
 - → ↓Transferrin saturation
- Post-natal iron therapy not clearly beneficial as this is an altered distribution not total body deficiency

Hyperbilirubinemia

- Jaundice reflects RBC turnover
- ↑ RBC mass in IDM
- Bruising at delivery
- Ineffective erythropoeisis may also contribute
- Phototherapy usually sufficient, but need to be careful regarding bruising and subsequent jaundice

Respiratory Distress Syndrome

- Robert (NEJM, 1976)
 - ↑ risk RDS in IDM
 - RR 5.6 after controlling for confounders
 - Confined to ≤ 38 wk
- Hyperinsulinemia
 - – ↓ surfactant due to ↓ substate availability
 - \fibroblast-pneumocyte factor activity leads to \lambda Type
 II pneumocyte activity
- Late preterm infants seem at high risk
- Good maternal control, Modern OB methods \u225trisk

RDS: Clinical Features

- Hypoxia due to diffuse microatelectasis
- Retractions
- Grunting and flaring
- DDx: TTN, pneumonia, sepsis, TAPVR
- Mostly in infants < 39 wk

Kliegman: Nelson Textbook of Pediatrics, 19th ed

RDS: Therapy

- Stabilize lung volumes with CPAP
- Intubation and surfactant often required
- Watch for Pneumos!!!
 - Needle aspiration
 - Chest tube
 - Incidence higher with CPAP than ETT/Surfactant

Myocardial Hypertrophy

- Myocyte glycogen †
- Septal hypertrophy
- Can be obstructive but is usually temporary
- Avoid hypovolemia, pressors
- ± cardiomyopathy (? ↓ iron)

Park: Pediatric Cardiology for Practitioners, 5th ed.

Metabolic Problems: Hypocalcemia

- ↓calcium → PTH secretion
 - → † bone resorption
 - ↑ Ca absorption from gut
- Calcium usually falls during first 24h (placenta shut off)
- PTH secretion then ↑ Ca
- DM appears to blunt PTH secretion and neonatal bone turnover

Hypocalcemia: Clinical Symptoms

- Often asymptomatic
- Jitteriness common
- Can prolong QTc
- Less likely
 - Seizures
 - Poor contractility
- Measure total and ionized calcium
- Consider DiGeorge if cardiac defect, abnormal lymphocytes (send FISH or microarray)

Hypocalcemia: Therapy

- Balance Risks/Benefits
- Usually can follow without therapy
- Calcium IV infiltration
 - Severe
 - May require plastic surgery
- Calcium gluconate 100 mg/kg/dose slowly
- Central lines preferred
- Oral therapy possible if stable

Hypomagnesemia

- May be as high as 33% of IDMs
- Symptoms similar to hypocalcemia
- Need to fix magnesium to fix the calcium
- Unclear etiology, may be related to maternal hypermagnesemia

Hypomagnesemia: Treatment

Magnesium Sulfate:

- -25 to 50 mg/kg/dose IV q4-6h x 3 to 4 doses
- Max single 2 grams (well below neonatal levels)
- Enteral: 100-200 mg/kg/dose PO QID

Cardiac side effects – need to monitor

- Bradycardia
- Heart block
- Hypotension
- Calcium gluconate is antidote

Hypoglycemia

- Extremely common among infants of diabetics
- Chronic intrauterine hyperglycemia > robust pancreatic insulin secretion by fetus
- Clamping of cord → shut off of glucose
- Continued insulin secretion causes glucose to drop soon after birth
- Therapy: early feeding (may need a bottle)
 - IV support with dextrose (D10, D12.5 via PIV)
 - Glucagon if needed

Glucose Homeostasis in Late-Preterm and Term Infants – AAP Committee on Fetus and Newborn (2011)

- "Current evidence does not support a specific concentration of glucose that can discriminate normal from abnormal or can potentially result in acute or chronic irrerversible neurologic damage." Pediatrics 127:3, March 2011.
- Glucose levels as low as 30 mg/dL are common in first 1 to 2 hr and usually are transient and asymptomatic.
- "No studies have demonstrated harm from a few hours of asymptomatic hypoglycemia during this normal postnatal period..."

Screening and Management of Postnatal Glucose Homeostasis in Late Preterm and Term SGA, IDM/LGA Infants

[(LPT) Infants 34 – 3667 weeks and SGA (screen 0-24 hrs); IDM and LGA ≥34 weeks (screen 0-12 hrs)]

Symptomatic and <40 mg/dL → IV glucose

ASYMPTOMATIC

Birth to 4 hours of age

INITIAL FEED WITHIN 1 hour Screen glucose 30 minutes after 1st feed

Initial screen <25 mg/dL

Feed and check in 1 hour

<25 mg/dL IV glucose* 25–40 mg/dL
Refeed/IV glucose*
as needed

4 to 24 hours of age

Continue feeds q 2-3 hours Screen glucose prior to each feed

Screen <35 mg/dL

Feed and check in 1 hour

35 – 45 mg/dL

Refeed/IV glucose*
as needed

Target glucose screen ≥45 mg/dL prior to routine feeds

* Glucose dose = 200 mg/kg (dextrose 10% at 2 mL/kg) and/or IV infusion at 5–8 mg/kg per min (80–100 mL/kg per d). Achieve plasma glucose level of 40-50 mg/dL.

Symptoms of hypoglycemia include: Irritability, tremors, jitteriness, exaggerated Moro reflex, high-pitched cry, seizures, lethargy, floppiness, cyanosis, apnea, poor feeding.

Committee on Fetus and Newborn Pediatrics 2011;127:575-579

IV Support of Glucose

- If significantly hypoglycemic: D10W 2 ml/kg bolus followed by constant infusion of D10W at about 80 to 100 ml/kg/day
- May need D12.5 or even higher dextrose
- Central line needed for > D12.5 (PICC or UVC)
- Glucose infusion rate > useful to track
- GIR = <u>% Dextrose X Fluid Rate X 0.167</u> Infant Wt

GIR Calculations

- 5 kg Baby
- Stabilized on D10W at 21 ml/hr (100 ml/kg/day)
- GIR = $10 \times 21 \times 0.167 = 7 \text{ mg/kg/min}$
- Knowing the GIR allows adjustment of dextrose concentration to maintain euglycemia while adjusting total fluids

Hypoglycemia tidbits

• Excessive fluid administration can cause fluid overload → hyponatremia → seizures So.....

- Follow BMP and follow mL/kg/Day of IVF
- If needing to persistently increase IV rate, then increase dextrose concentration and place central line if needed

Glucagon

- Stimulates gluconeogenesis
- Dose: 200 mcg/kg/dose IV push, IM, or SC
- Continuous: 10-20 mcg/kg/hour
- Max dose 1 mg (1000 mcg)
- Lasts 2 hours
- Indications:
 - Hypoglycemia refractory to IV infusions
 - No IV access

Feeding Difficulties

- Feeding difficulties are poorly described in literature
- Periods of intrauterine hypoglycemia may cause secretion of glucagon, which slows intestinal motility (other theory behind Small Left Colon Syndrome)
- Late preterm infants of DM may stay in NICU weeks learning to PO feed or be discharged with home gavage feeds (NG or PEG)

Fetal effects: the long term view

- Is adult health influenced by fetal environment???
- Fetal Origins of Adult Diseases
- "Barker Hypothesis"
- Studies in US, UK, and elsewhere in Europe show fetal growth restriction increases risk for adult cardiac disease
- Fetal metabolic "programming" may not adapt well to post natal circumstances

Barker: Infant wt and Adult Cardiac Disease (1993)

- Lower birth weight and wt at 1 year were associated with increased risk for adult death from cardiovascular disease
- Lowest risk was for infants born at 9.5 lbs
- Risk then rose with advancing BW

Fetal Programming

- Hales and Barker (1992) Thrifty Phenotype
 - Fetus adapts to poor intrauterine nutrition by concentrating growth on vital organs (brain)
 - Physiologic response to enhance post-natal survival in environment of questionable nutrition
- Physiologic problems may arise if adaptive response is challenged by abundance of nutrition post natally.
- Concern for excessive post natal growth in growth restricted infants may lead to HTN, insulin resistance, obesity later.

Infant of DM: Uterine Environment

- Intrauterine environment of IDM:
 - Hyperglycemia
 - Chronic increased pancreatic insulin secretion
 - Intermittent hypoglycemia??
 - Increased metabolic rate
 - Increased anabolic rate
 - Increased acidosis
 - Increased growth fat mass, hypertrophy of organs (heart, liver)
 - Increased oxidative stress

Gestational DM: HTN in Offspring

Mixed results:

- Jerusalem perinatal study: GDM mothers and > 60,000 singleton offspring at 17 yr
 → no association of GDM to hypertension in offspring (born between 1964-1976).
- Retrospective Pima Indian study showed GDM significantly increased systolic BP in children at 7-11 yr. (Still significant after adjusting for BW and childhood obesity).
- Third Study (Cho, et al J Pediatrics, 2000) SBP and MBP was significantly higher in children born to GDM mothers

GDM: Overweight and Obesity in Offspring

- Evidence exists showing GDM is linked to overweight/obesity in offspring:
 - UK study showed
 - † risk for obesity/overweight in 9-11 yo offspring of mothers with GDM, but not Type II DM
 - Higher BMI at 17 yr is significantly associated with GDM
 - Prospective study of over 280,000 Swedish men found maternal GDM during pregnancy was associated with higher BMI at 18 yr.

Type 2 DM in Offspring of DM

- Pima Indian study: Sibling study
 - higher rates of Type 2 DM in those born after mother developed DM (Dabelea, Hanson, et al, Diabetes 2000)
- Pima Indian Study:
 - Offspring of mothers with impaired 3rd trimester glucose tolerance
 - Young adults had ↑ risk (30% at 24 yr) for type 2 DM and risk was directly correlated to degree of hyperglycemia after GTT.
 - If mother had Type 2 DM, 51% risk of type 2 DM for 24 yo offspring.

DM in Offspring of Diabetic Mothers

- Danish Study (Clausen et al Diabetes Care, 2008):
 - Offspring of mothers with DM had 8 fold ↑ risk for diabetes or pre-DM of any type compared to controls
 - Intrauterine hyperglycemia (GDM or Type 1 DM)
 - Increased risk for type 2 DM or pre-DM in offspring
 - At 22 yr, offspring had
 - 21% risk for type 2 DM or pre-DM if mother had GDM
 - 11% risk for type 2 DM or pre-DM if mother had Type 1 DM
 - 4% risk if mother had no DM
 - 3rd Trimester hyperglycemia in Type 1 DM associated risk for diabetes in offspring.

How does this happen??

- Mechanisms unclear may involve *Epigenetic* modifications
- Epigenetic Modifications are *environmental changes* to gene expression involving DNA methylation, post-translational histone modifications, and other mechanisms that can be passed down between cell generations.
- Interesting field with widespread applications

Infant of Diabetic: Summary

- Watch for congenital anomalies even if gestational DM
- Often large for gestational age but may be small if mother has vascular disease
- At risk for hypoglycemia due to insulin secretion "overshooting" cutoff of glucose with clamping of cord
- May also see hypocalcemia, hypomagnesemia, jaundice, polycythemia/hyperviscosity, birth injuries, asphyxia.
- Often feed poorly as neonates.
- Infants of DM appear to be at higher risk for elevated BP, higher weight in late childhood and as adults, and adult DM.